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ABSTRACT

Particle-based hydrodynamics models offer distinct advantages over Eulerian and

Lagrangian hydrocodes in particular shock physics applications. Particle models are designed

to avoid the mesh distortion and state variable diffusion problems which can hinder the

effective use of Lagrangian and Eulerian codes respectively. However existing particle-in-cell

and smooth particle hydrodynamics methods employ particles which are actually moving

interpolation points. The latter distinction has been emphasized in the more recent

development of element-free Galerkin theory. As a result general formulations of all of the

aforementioned methods are based on the partial differential equation forms of the

continuum balance laws which underlie conventional Eulerian and Lagrangian schemes. An

alternative modeling methodology, based on the application of Hamilton's equations to a

system of deforming physical particles, provides a fully Lagrangian, energy-based approach

to shock physics simulations. Neither interpolations of field variables nor continuum balance

laws are used to establish the state equations for the particle system. Mechanical and thermal

interaction of the particles is accounted for by nonholonomic constraints which determine

both particle entropy evolution and particle collision loads. Application of the method is

illustrated by simulation of wall shock, Whipple shield, and multi-plate shield impact

problems. A three dimensional, vectorized and autotasked implementation of the particle

model presented here has been coded for application to orbital debris shield design

simulations.
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INTRODUCTION

Most numerical models for shock physics simulations (Anderson, 1987) have been

based on continuum balance laws for mass, momentum, and energy formulated in

Eulerian, Lagrangian, or arbitrary Lagrangian-Eulerian (ALE) reference frames (Benson,

1992). Examples are the Eulerian finite volume code CTH (McGlaun et. al, 1990), the

Lagrangian finite element code DYNA3D (Goudreau and Hallquist, 1982), and the

arbitrary Lagrangian-Eulerian code RHALE (Budge and Peery, 1993). Such codes have

seen extensive and successful application to a wide range of problems. Despite this

success, the effective use of any continuum based model in some astrophysics (Benz et. al,

1986) and engineering design (Hertel, 1993) applications has proven quite difficult. For

example, mesh distortion in Lagrangian finite element codes and difficulties in tracking

highly fragmented solid bodies in Eulerian hydrocodes have made continuum-based

simulations of particular hypervelocity impact problems impractical (Fahrenthold, 1993

and 1995). The limitations of continuum based codes in certain shock physics applications

has been in part responsible for the development of alternative particle-based methods for

hydrodynamics simulations.

Most particle-based hydrodynamics models employ either a particle-in-cell (PIC)

or a smooth particle hydrodynamics (SPH) approach. The basic PIC method (Monaghan,

1985) and its extensions (Sulsky et. al, 1994) employ nondeforming mass fixed particles

and a space fixed grid. Mapping of field variables back and forth between the particles and

the grid serves to define the gradients of field variables, establish the update of the particle

properties, and advect the particles with their associated internal states. The basic SPH

method (Monaghan, 1992) and its extensions (Libersky et. al, 1993) again employ

nondeforming mass fixed particles, in this case with moving interpolation functions. In

SPH the moving interpolation functions define the gradients of field variables, allow for

updating of the particle properties, and determine the motion of the particles with their

associated internal states. As emphasized in recent work on the development of element-



freeGalerkin (EFG) methods(Lu et. al, 1995),the 'particles'of the PIC, SPH, andEFG

formulationsarein factmovinginterpolationpoints.As aresult,generalformulationsof all

the abovemethodsrely at leastin parton thepartial differential equationsof continuum

mechanicsin establishinga systemlevel model - usually the mass,momentum,and

energybalancelawswhichunderlieconventionalEulerianfinite differenceandLagrangian

finite elementmodelsof shockphysicsproblems.

As an alternative to existing particle basedmethods,the presentreport applies

Hamilton's equationsto a systemof translating, deforming, and thermomechanically

interactingphysicalparticles,to obtainathreedimensionalhydrodynamicmodel for shock

physicssimulations.Themethodis energybasedandhencesimpleto formulate,with no

needto considercontinuumbalancelaws, interpolationfunctions,or weighted residual

solution techniques.Sincetheparticle kinematics,energyfunctions,and constraintsare

fully Lagrangianin form, themethodavoidsthediffusion problemstypically associated

with interpolationonspacefixedmeshes(McGlaunet. al, 1990)andthestabilityproblems

observedwith somemovinginterpolations(Swegleet. al, 1995).Althoughpreviouswork

hasmadelimited useof entropystates(Monaghan,1992andBrown, 1981),totalentropy

variablesappearhereasgeneralizedcoordinatesfor theparticles,subjectto nonholonomic

thermal constraints describing heat conduction and energy dissipation. Additional

nonholonomic constraints on the particle coordinates and deformation gradients are

introduced, in order to represent mechanical interaction of the particles. The latter approach

avoids the introduction of essentially Eulerian potential energy functions (Monaghan,

1988) or the remapping of data between the particles and a grid (Sulsky et. al, 1994) in

order to quantify collision forces. Finally the fully Lagrangian frame of reference used here

means that no mixing or partial pressures expression (McGlaun et. al, 1990 and Monaghan

and Kocharyan, 1995) is needed to represent the multi-material case.

The succeeding sections are organized as follows. First the particle kinematics are

specified. Next the system Hamiltonian is formed by defining kinetic and potential energy



expressions.This identifiesthegeneralizedcoordinatesandmomentawhich serveasstate

variables.Next the viscosityandheatconductionmodelsareformulated,aswell asthe

thermalandmechanicalconstraintswhichacton the system.Finally theprecedingresults

areappliedto establishHamilton'sequations,specificallya first orderstatespacemodel for

theparticlesystem,in explicit rateform.Simulationof wall shock,Whippleshieldimpact,

andmulti-plateshieldimpactproblemsillustratenumericalapplicationof themethod.

KINEMATICS

The physical systemmodeledhere is a collection of 'n' deforming spherical

particles,interactingin boththemechanicalandthermaldomains,with thefixed massof

particle 'i' denotedby m(i) (i = 1,2..... n). For homogeneouslydeformedparticles,the

position(x) andvelocity(x) of amaterialpointin particleT areexpressedas

x = F(i) ( r - rcm(i) ) + ¢(i) ; k = _z(i) ( r - rcm(i) ) +/:(i) (la,b)

where r and r cm(i) are the positions of the material point and the particle center of mass

respectively in the reference configuration, c (i) is the current position of the particle center

of mass, F (i) is the particle deformation gradient, and a superposed dot denotes the total

time derivative. The particle volume in the current (V (i)) and reference (V (i))

configurations are related by (Malvern, 1969)

v(i)/v(_) = det(F (i)) = F(i) 3 (lc)

For spherical particles,

V(i) = (4rd3) h(i) 3 (ld)

where the particle radius (h (i)) is

h(i) = h(i)F(i)o " h(i)o = [3V(_ )/(4r_)] 1/3 (le,f)

Note that c(i) and F(i) are generalized coordinates which describe the particle motion.
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KINETIC ENERGY

The system kinetic co-energy (T*) is

nT*= £ T *(i) ; T *(i)= (1/2) pJ_.J_ dV

i=l V

(2a,b)

Using equations (1), exact evaluation of the integral (2b) yields

n

T* = (1/2) E
i=l

[ m(i) _:(i)2 + j(i) F(i)2 ] (2c)

where j(i) is a (constant) moment of inertia calculated in the reference configuration

j(i) = (m(i)/v(i)) I ( r-rcm(i))" (r-rcm(i)) dVo

v(i)
O

The kinetic co-energy expression (2c) defines the system momenta as

(2d)

p(i) _ aT* _ m(i) 6(i) ; H(i) _ aT* _ j(i) F(i)

a/:(i) 31_(i)

(2e,f)

Finally a Legendre transform allows the kinetic energy (T) to be written as a function of the

center of mass momenta (p(i)) and distributed momenta (H (i))

n

T = { £ [ p(i)./:(i) + H(i) F(i) ] } T* (2g)
i=l

n

T= (1/2) Y
i=l

[ m(i)-1 p(i)2 + j(i)-1 H(i)2 ] = T(p(i), H(i)) (2h)

The distributed momentum accounts for the kinetic energy of expansion or compression of

the particles.

INTERNAL ENERGY

The Hamiltonian approach used here incorporates general thermal and mechanical

dynamics, hence the conserved potential is the total internal energy (U). For a mass fixed



systemwith theparticlekinematicspreviouslyoutlined, the exact expression for the total

internal energy is
n

U = E m (i) u(i)(p(i), s(i) ) (3a)
i=l

where u (i), p(i), and s (i) are the internal energy per unit mass, density, and entropy per unit

mass for particle 'i'. Since the latter two variables are related to the total particle entropy

(S (i)) and deformation gradient by

s(i) = m (i) s (i) ; p(_)/p(i) = det(F(i)) = F(i)3 (3b,c)

where p(_) is the density in the reference configuration, it follows that the system intemal

energy can be expressed as a function of the '2n' generalized coordinates F (i) and S (i)

U = U(F (i), S (i)) (3d)

Hence the generalized conservative forces for the system may be calculated as

where

G(i) _ _)U V(_) p(i) 0(i) 3U0F(i ) - - 3 F(i) 2 , - 0s(i ) (3e,f)

p(i) 0u(i) . 0(i) Ou(i) (3g,h)
90)2 - _9(i ) ' - Os(i )

define the pressure (p(i)) and temperature (0 (i)) for particle 'i'. Since equations (3a) through

(3h) are exact, the generalized conservative forces may be calculated for any equation of

state

(3i,j)p(i) = p(i)(p(i), s(i) ) ; 0(i) = 0(i)(p(i), s(i) )

derived from an appropriate internal energy function.

SHEAR AND BULK VISCOSITY

Particle methods normally incorporate a numerical viscosity, in order to avoid

particle streaming effects and accurately reproduce shock waves (Monaghan and Gingold,

1983). In the present model there are two deformation modes which must be damped. For



therelativemotionof particlecentersof mass,a 'shearviscosity'forcemaybeassumedto

act on the masscenters.The simplestform for sucha dampingforce is one which acts

alonga linejoining themasscentersof two neighboringparticlesandisproportionalto the

relativevelocitiesof theparticles

n
f(i) = Z la(i,J){(/:(i) _/:(j)). (c(i) _ c0))} (c(i) - c0)) / (/:(i) _/:0))2 (4a)

j=l

where _(i,j) is the damping coefficient associated with the interaction of particles T and 'j'.

Previous work in shock simulations (Noh, 1978) suggests a damping coefficient of the

form

_t(i,J ) = c o (1/2) ( O(i) c(i)A(i) + p(J) Cs(J)A(J) ) A[_(i,J )1

A(i) = rc h (i)2 ; c_i) = { K(i)/p(i) } 1/2

(4b)

(4c,d)

where A(i), c (i), and K (i) are the (variable) cross sectional area, sound speed, and bulk

modulus of particle T, c o is a dimensionless shear viscosity coefficient, and the step

function 'A' is defined by

A[_]=I for _>0 ; A[_]=0 for _<0 (4e)

_(i,j) = (h(i)+h(j)) _ ic(i) _ c0)l (4f)

The step function ensures that only neighboring particles interact.

In order to damp the volumetric deformation mode of individual particles, a 'bulk

viscosity' is required. Here a viscous 'pressure' (specifically an isotropic first Piola-Kirchoff

stress) is introduced with the simple form

F,B(i) =_ v(i) f:(i) ; v(i) = Cl p(i) C(si) h(i) (5a,b)

where v (i) is a bulk viscosity with c 1 a dimensionless coefficient.

6
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HEAT CONDUCTION

As in thecaseof theviscosity,accuraterepresentationof shocksnormallycalls for

the introductionof a heatconductionor artificial heatflux model (Noh, 1978).With the

particle entropy serving as generalizedcoordinate,heat conduction is appropriately

representedhereusingtheentropyrateform

n

scon(i) = (1/0(i)) Z R(i,J) (0 (i)- 0(J)) (6a)

j=l

where R(i,J) is the overall heat transfer coefficient describing conduction between particles

'i' and 'j',

R(i,J) = c2 (1/2) (p(i) c (i) c(_) A (i) + p(J) CQs") C0v) A(J) ) A[;(i,J )] (6b)

with c(_ ) the (variable) specific heat for particle 'i' and c2 a dimensionless heat conduction

coefficient. Again only neighboring particles interact.

MECHANICAL AND THERMAL CONSTRAINTS

The adoption of a purely Lagrangian frame of reference has simplified the

formulations in the preceding sections, but it somewhat complicates the treatment of

constraints. In place of conventional energy balance equations, evolution equations for the

entropy are introduced here, in the form of the nonholonomic constraints

_;(i) = sirr(i) _ sCon(i) (7a)

where _;irr(i) is the rate of irreversible entropy production in particle 'i'. The latter quantity is

calculated from the energy dissipation rate (w(i)) associated with shear and bulk viscosity

effects

sirr(i) = (1 / 0 (i)) -_¢(i) (7b)

where
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_r(i) = f(i)./:(i) _ V(oi) pB(i) _:(i) = f(i)./:(i) + GB(i) F(i) (7c)

G B(i) = c 1 p(i) c (i) h(i) V(_) _:(i) (7d)

The coefficients of the generalized velocities (/:(i) and/_(i)) in the nonholonomic constraints

(7a) will give rise to nonconservative generalized forces in the system level state equations.

collisions.The mechanical constraints on the particles arise from particle

Specifically the generic particles 'i' and 'j' must satisfy the inequality constraints

le(i) - c0)l - ¢z (h(i)+h(J)) > 0 ; oc = (rd6) 1/3 (8a,b)

where the factor o_ allows for 'body-centered' cubic packing of particles at the reference

density. In rate form the last expression is

[ (c(i) - c0)) / Ic(i) - c0)l ] • (/:(i) _ _(j)) _ a { h(i)o F(i) + h_) F(J) } _> 0 (8c)

As is often the case, the inequality constraints introduced here call for a somewhat ad hoc

treatment. In the next section they are accounted for by the introduction of Lagrange

multipliers, which then give rise to additional generalized forces in the system level state

equations.

HAMILTON'S EQUATIONS

The preceding description of stored energy functions and constraint equations

allows for formulation of a system level Hamiltonian model (Ginsberg, 1988). The

Hamiltonian (1-I) for the system is

H = T + U = H (p(i), c(i), H(i), F(i), s(i) ) (9a)

The canonical form of Hamilton's equations is therefore (for i = 1, 2 ..... n)

l_(i ) _ _ _)H + q(i) . _(i) _ _I-I (9b,c)
De(i) ' Op(i)
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H(i) _ On
_OF(i) + QF(i)

orI
o-- os(i) + QS(i)

; _:(i)_ _rI
0H(i) (9d,e)

(9f)

whereq(i), QF(i), andQS(i) are thegeneralizednonconservativeforces,which mustbe

calculated here from the thermal and mechanical constraints. If T(i) are Lagrange

multipliers for the entropy evolution constraints (7a), and _ (i,j) are Lagrange multipliers for

the particle interaction constraints (8c), it follows that

QS(i) = T(i) (10a)

QF(i) =_ (7(i)/0(i)) GB(i) + GC(i) (10b)

q(i) =_ (7(i)/0(i)) f(i) + fc(i) (10c)

where the contributions

n

fc(i) = Z _,(i,j) (c(i) _ c(J)) /Ic( i)- c(J)l (1 la)

j=l
n

G c(i) = - Z ah(i) _(i,j) (lib)
j=l

arise from the mechanical constraints and the remaining terms on the right hand sides of

equations (10) are due to the nonholonomic entropy evolution constraints.

For an efficient solution procedure, elimination of the Lagrange multipliers is of

course desirable. Note that the last of Hamilton's equations requires

0(i) = QS(i) (1 lc)

and hence identifies the temperature as the Lagrange multiplier T(i) for the 'ith' entropy

evolution constraint equation. To avoid the considerable complication of taking the _(i,j) to

be unknowns in a differential-algebraic formulation of the system level model, it is

advantageous to represent the latter quantities as penalty forces, by assuming

_,(i,j)= k(i,j)[a (h(i)+h(J))-Ic(i)-cO)l] A[_c(i,J)] (IId)
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where the penalty stiffness is (Hallquist, 1983)

and

k(i,J)= c3 max{ K(i)A(i)2/v(i),K(J)A(J)2/v(J)}

_c(i,j)= a (h(i)+h(J))-Ic(i)-cO)l

(lle)

(llf)

with c 3 a dimensionless penalty stiffness. Note that the use of a Lagrange multiplier

technique here serves the essential task of properly scaling the contributions of the collision

forces _(i,j) in the evolution equations for both the center of mass momenta and the

distributed momenta.

Combining the expressions (9) through (11) yields the final form of Hamilton's

equations as

li(i)=- f(i)+ ic(i) (12a)

_(i)= re(i)-I p(i) (I2b)

(12c)I_I(i) = _ G(i) _ GB(i) + GC(i)

l_(i) = j(i)- 1 H(i) (12c)

s(i) = sift(i) _ sCon(i) (12d)

Perusal of the preceding sections shows that the relations (12) arc in fact explicit rate

equations for the state variables p(i), c(i), H(i), F(i), and S (i) (i = l, 2 ..... n).

NUMERICAL IMPLEMENTATION

Several other points relevant to numerical implementation should be noted.

Symmetry boundary conditions may be applied by extending the penalty approach used in

the preceding sections to account for particle collisions. For example, for model symmetry

about the plane z = 0, it is appropriate to introduce additional constraint forces for each

particle in the form



fz(i) = c3 (K(i) A(i)2/v(i)) [ o_h(i) - min{ c_ h(i), c (i). iz }] i z (13a)

G z(i) =- c 3 (x h (i) (K (i) A(i)2/V (i)) [ c_ h (i)-

min{ (x h (i), c (i). i z }] (13b)

where i z is a fixed basis vector.

If a Runge-Kutta or leap-frog (Libersky et. al, 1993) algorithm is used to integrate

the system state equations, a variable time step may selected as follows:

At = (1/c4) Wma x- 1/2 (14a)

Wma x = max{ w_ ) for k= 1, 2, 3 ..... 6 and i= 1, 2, 3 ..... n } (14b)

c4 is a dimensionless constant and the w_)- are squared frequencies calculated usingwhere

w_ ) =lp_etl/(m(i)hmin) ; k= 1,2,3 (14c)

w_ ) = p(i)2/(m(i)hmin )2 + K(i)/(p(i)hn2fin ) (14d)

w_ i) = II_Inetl/j(i) ; w_ ) = Isnetl/(m(i)c(i)) 2 (14e,f)

hmi n = min{ h (i) for i = 1, 2, 3 ..... n } (14g)

The net rates of change indicated in the last set of equations are defined as the right hand

sides of equations (12). The first four time step limits of (14c) and (14d) are used by

Monaghan and co-workers (Monaghan, 1992 and Monaghan and Lattanzio, 1985) while

the last two are appended here for the distributed momentum and entropy evolution

equations.

Finally linked lists (Hockney and Eastwood, 1981) may be used to identify the

nearest neighbors of each particle and thereby greatly reduce the effective lengths of the

summations in equations (4a), (6a), (I la), and (1 lb). Since each particle has a time varying

radius, the cell size used in the construction of linked lists is determined by the maximum

particle radius

11
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hmax = max{ h(i) for i = 1,2, 3..... n } (14h)

EXAMPLE SIMULATIONS

The example simulations discussed here were run using a three dimensional,

vectorized and autotasked implementation of the model discussed in the preceding sections

of the report. All of the examples take

Co=0.05 ; Cl=l.00 ; c2=1.00 ; c3=25.0 (15)

The first example is a one dimensional wall shock problem (Noh, 1978), applied to

an ideal gas with density shift, described by the equation of state

u(i) = Cv (0(i) _ 0o ) ; p(i) = (Z-l) cv 0 (i) (9(i) _ Po ) (16a,b)

0 (i) = 0 o exp[(s (i) - So)/Cv] [p(i)/po](Z" 1) exp[(Z-1)(po/p(i)-l)] (16c)

where Z is the ratio of specific heats, 0 o is the reference temperature, and so is the

reference entropy. Parameters of the simulation are shown in Table 1. This problem

represents the collision (at position x = 0 and time t = 0) and shock compression of two

particle streams with initial conditions

p= 1.0 ; s=1.0 ; H=0.0 ; F=1.0 (17a)

+=+1.0 for x<0 and 6=-1.0 for x>0 (17b)

Post shock conditions calculated from the Rankine-Hugoniot relations (Cole, 1948) are

v=0.0 ; p=2.618 ; P=1.618 ; 0=1.5 (18)

Figures 1 through 4 show good agreement of the exact and numerical velocity, density,

pressure, and temperature distributions at t = 0.8, with minimal shock smearing.
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The secondexample representsthe oblique (three dimensional) impact of a

sphericalprojectile on a Whipple shieldat approximatelysevenkilometersper second.

Both theprojectileandthe shieldweretakento bealuminum,with the materialdescribed

by aMie-Grtineisenequationof state.Parametersof thesimulationareshownin Table 2.

Figure 5 showsthe simulation results.Simulation of the shield perforationand debris

cloud evolutionto initial impacton thewall platerequiredaboutoneCPUhouron aCray

T916.

Thethirdexamplerepresentstheobliqueimpactof asphericalprojectileonamulti-

plate shieldat approximatelysevenkilometerspersecond.Again both the projectile and

shieldmaterialsweretakento bealuminum,anda Mie-Grtineisenequationof statewas

used.Parametersof the simulationareshownin Table 3. Figure 6 showsimpactof the

projectile and evolution of the debris cloud as successiveshieldsareperforated.The

simulationrequiredaboutsix CPUhourson a CrayT916,without rezoning,in orderto

reachinitial impactonthewall plate.

CONCLUSION

The present report has presented a new numerical method for hydrodynamics

simulation, developed using a fully discrete Hamiltonian description of a system of

thermomechanically interacting physical particles. It relies exclusively on energy concepts,

as opposed to Eulerian or Lagrangian interpolation functions and partial differential

equation descriptions of the continuum dynamics. The kinematics, stored energy functions,

and constraints are all formulated in a fully Lagrangian frame of reference. In addition it

makes uniform use of entropy variables in accounting for all conservative and non-

conservative thermal effects. The preceding combination of modeling features makes the

present work a distinct departure from existing PIC, SPH, and EFG methods, as well as

more conventional Lagrangian, Eulerian, and arbitrary Lagrangian-Eulerian hydrocodes.

Specific advantages of the method include: (1) the simplicity of the formulation, (2) the
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avoidanceof stability problemswhich arisewith theessentiallyEulerianpotentialenergy

formulationsof generalizedSPH,and(3) theeliminationof theparticle-to-gridandgrid-to-

particlemappingsassociatedwithgeneralizedPIC.

Thepresentwork doesnot addresseffectssuchasmulti-phaseflow (Monaghan

and Kocharyan, 1995)andfragmentation(Benzand Asphaug,1995)which have been

incorporatedinto alternativemodelingschemes,asthosemethodsevolved.Howeverthe

fully Lagrangianformulationusedhereisclearlyamenableto thetreatmentof multi-phase

problemsandmaterialnonlinearitiesin ahydrodynamiccontext.
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Table 1. Wall shock simulation

Reference density

Reference temperature

Reference entropy

Specific heat

Ratio of specific heats

= 1.0
= 1.0

= 1.0

= 1.0

= 5/3

Number of particles (-2 < x < +2) = 400
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Table 2. Whipple shield impact simulation

Projectile diameter
Shield thickness

Impact velocity

Impact obliquity
Material

Equation of state type

Reference density

Reference temperature

Specific heat
Initial Griineisen gamma

Hugoniot slope coefficient
Bulk sound speed

Number of particles
Total simulation time

CPU time (Cray T916)

Number of time steps

0.500 cm

0.127 cm

0.695 cm/lasec

30 degrees
aluminum

Mie-Griineisen

2.70 g/cm 3
293°K

0.884 x 10-5 Mb-cm3/(g-°K)- "

1.97

1.339

0.5386 cm/l.tsec

3,136

17.0 p.sec
1.03 hrs

10,000
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Table 3. Multi-plate shield impact simulation

Projectile diameter
Plate thickness

Plate spacing

Number of plates

Impact velocity

Impact obliquity
Material

Equation of state type

Reference density

Reference temperature

Specific heat
Initial Gri.ineisen gamma

Hugoniot slope coefficient

Bulk sound speed

Maximum number of particles
Total simulation time

Number of time steps
CPU time (Cray T916)

0.320 cm

0.010 cm

2.50 cm

4

0.695 cm/ktsec

30 degrees
aluminum

Mie-Grilneisen

2.70 g/cm 3

293°K

0.884 x 10 -5 Mb-cm3/(g-°K)- -

1.97

1.339

0.5386 cm/_sec

23,468

18.0 _sec
18,323

6.01hrs
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